SYLLABUS FOR 3 YEAR B.Sc (HONOURS) COURSE IN COMPUTER SCIENCE

PART - I

PAPER -I

(THEORETICAL: FULL MARKS 100)

1.1	Computer Fundamentals 1.1.1 Introduction to Computers & Problem Solving 1.1.2 Number Systems & Arithmetic 1.1.3 Boolean Algebra & Digital Logic Digital Logic Design & Computer Organization — I 1.2.1 Introduction to Basic Electronics	(10) (10) (10)	(70)
	1.2.2 Digital Logic & System Design 1.2.3 Computer Organization — I	(30)	
	PAPER —II		
	(THEORETICAL: FULL MARKS 100)		
2.1 2.2 2.3	Graph Theory Discrete Mathematics Numerical Algorithms	(30)	(25) (25) (20)
2.4	Operation Research PART — II		(20)
	PAPER — III .		
	(THEORETICAL: FULL MARKS 100)		
3.1	Programming Language — I 3.1.1 Introduction to Programming Paradigms & Techniques 3.1.2 C Programming	(10) (15)	(25)
3.2	Data Structures Systems Software 3.3.1 Operating System 3.3.2 Formal Language & Language Translators	(25) (25)	(25) (50)

PAPER-IV

(PRACTICAL: FULL MARKS 100)

GROUP — A (SOFTWARE LABORATORY — I: MARKS 50)

	arout A (ser twite Baboliti	1. 1 ///// 30)				
4.1 4.2 4.3	Familiarity with Window Based PC Software	stems	(10) (10) (30)			
GROUP - B (HARDWARE LABORATORY - I: MARKS 50)						
4.4	Digital Logic Design	* *	(50)			
		* 9				
PART - III						
	PAPER - V (PSV)	,				
(THEORETICAL: FULL MARKS 100)						
5.1	Microprocessor & Computer Organization — II 5.1.1 Microprocessor, Interfacing & its Application 5.1.2 Computer Organization — II	s (25) ✓ (25)	(50)			
5.2	Data Communication & Computer Networks 5.2.1 Data Communication 5.2.2 Computer Networks		. (30)			
5.3	Computer Graphics	(20)	(20)			
	PAPER-VI (1	ч)				
	(THEORETICAL: FULL MARKS	(100)				
6.1	Programming Language —II 6.1.1 Object Oriented Programming Concepts 6.1.2 Visual Programming	(15) (10)	(40)			
6.2 6.3	6.1.3 Internet Technologies Software Engineering Data Base Management System	(15)	(20) (40)			

PAPER-VII

(PRACTICAL: FULL MARKS 100)

GROUP - A (HARDWARE LABORATORY: MARKS 50)

7.3	Microprocessor Programming & I/O Interfacing (17"/	
	GROUP - B (SOFTWARE LABORATORY: MARKS 50)	
7.2 7.3	System Configuration Front End Programming & WEB Utilities [VB, HTML](14)	(10) (40)
	PAPER - VIII	-
	(PRACTICAL: FULL MARKS 100)	
8.1	C / C++ Programming Relational DataBase (ORACLE / SQL SERVER/ SYBES) (C)	(50)
18.2	Relational DataBase (ORACLE / SQL SERVER/ SYBES) (KL)	(30)
8.3	Unix Shell Programming (10)	(20)

PART -I

Paper - I

1.1 Computer Fundamentals

1.1.1 Introduction to Computers & Problem solving

Generation of Computers; Computer system: Basic Block Diagram, Super Mainframe, Mini & Personal Computer, Nomenclature, Software: Systems and Application; Hardware & Software; Algorithms: Definition, essential features; Complexity: notation, time & space; Computability & correctness concepts; Structured programming concepts; Process of problem solving, Flowcharts and Pseudo codes.

1.1.2 Number System & Arithmetic

Number System: Positional, binary, octal, decimal, hexadecimal and their representations, Methods of conversion from one base to another, sign magnitude, 1's complement; Binary Arithmetic; Fixed & floating point numbers: representation, biased exponent, range & precision, errors, overflow, underflow, BCD arithmetic

1.1,3 Boolean Algebra

Concepts of propositional logic; Boolean algebra: definitions, postulates, properties, simplification of logical expressions using properties and maps (up to 4 variables), Min-term, Max-term expressions; Logic gates: AND OR, NOT, XOR, Combinational circuits, Simple logic design using logic gates.

1.2 Digital logic design & Computer Organization – I

1.2.1 Introduction to Basic electronics

Elementary physics of semiconductor: P-N junction diodes, Zener diodes, FUT, FET. MOSFET; Equivalent circuits for diodes, transistors, FETS; Switching characteristics of diodes and transistor, Thyristor; Applications of diodes in rectification and clamping; Amplifiers: Class A, B, C, Multistage amplifiers; Concept of negative & positive feedback; Oscillators: R-C, Crystal; Regulated Power Supply: shunt & series; switching; Inverters: using bi-polar transistors & FET; Operational Amplifiers.

1.2.2 Digital Logic and System Design

Alphanumeric codes: ASCII, EBCDIC; Single error detection & correction; Hamming Codes and decoding techniques. Combinational Circuits: encoder, decoder, code converter, comparator, adder/subtractor, multiplexer, demultiplexer, parity generator, PLA. Basic Sequential circuits; Flip-Flops: RS, JK, D, T; Schmitt-trigger; Concepts of single and two-phase clocks; Multivibrators: astable and monostable; Registers and shift registers; Counters: Synchronous & asynchronous. Digital-Analog interfacing: D/A & AID converters, basic ladder, counter ramp, successive approximation, sample and hold.

1.2.3 Computer Organization - I

Computers: Basic building blocks and subsystems, Control and intra-connection, **Bus; Tristate devices; CPU:** General structure, **CPU Registers; Instruction formats & Design strategies, Addressing modes:** direct, indirect, immediate, relative, implied, indexed, 0-1-2 addressing schemes; **Stack organization** & **implementation; Memory:** Organization, addressing, reading & writing, SAM, RAM & ROM, different storage technology.

Paper-II

2.1 Graph Theory

Graphs: Definition, finite and infinite graphs, directed and undirected, incidence, degree, isolated vertex, pendant vertex, null graphs. Walks; paths and circuits; Connected and disconnected graphs; Euler's graph; Hamiltonian paths and circuits Trees: Definition and basic properties; distance and centers; spanning trees; Shortest path problems; Matrix representation of graphs: Incidence, adjacency and circuit matrix, simple applications.

2.2 Discrete Mathematics

Permutation; Combination; Groups; Subgroups; groups within groups; normal subgroups; Rings; Sub rings; Fields; Vector spaces.

2.3 Numerical Algorithms

Concept of errors in computation; Solution of non-linear equations: Initial value and convergence, Bisection, Regula-Falsi, Newton-Raphson; Solution of linear equations of the form Ax=b: Gaussian elimination, Matrix inversion, triangular factorization, Gauss-Seidel; Eigenvalues and Eigenvectors: definitions, properties, Interpolation: Newton's forward and backward interpolation, Lagrange interpolation; Least square method of curve fitting;

Numerical integration: - Trapezoidal rule, Simpson's rule, Gauss quadrature formula; Solution of differential equations: Euler's method, Taylor's series, Runge-Kutta method;

2.4 Operation Research

Review of linear programming; (Transportation and assignment problem Integer programming: Cutting plane, branch and bound; Dynamic programming; Modeling; Optimization; PERT/CPM networks; Queuing theory: Basic concepts, queuing models, Poisson statistics, M/M/1 queue; Applications.

PART - II

Paper-III

3.1 Programming Language — I

3. 1.1 Introduction to Programming Paradigms & Techniques

Criteria for Language design; Character sets; BNF; Variables & Assignment statements; Constants & initialization; Conditional & iterative statements; Data Types: Elementary, Enumerated, Pointer, Structure, type collection, Scope & Extents, Parameter Evaluation and Passing: Call by name, call by value, call by reference; Data abstraction.

3.1,2/C Programming

Introduction: Basic structure, character sets, keywords, identifiers, constants, variable type declaration, Execution of some simple sample programs. Operators: arithmetic, relational, logical and assignment, increment, decrement and conditional; Operator precedence and associations; Expressions in C; Expression evaluation and type conversion; Formatted input & output; Statements in C: Assignment, control and loops; Arrays: Single and multi dimensional, initialization, string handling with arrays, string handling functions. Functions in C: need, sample examples, argument passing in C, functions & their use, return values and their types, recursion; Structures: definitions & initialization, array of structure, array within structures. Pointers: declaration & initialization, accessing variables through pointers, pointer arithmetic, pointers & arrays; strings; pointer to functions & structures. File access: opening LK: closing, I/O operations; Linked list: Concepts, simple implementations.

3.2/ Data Structures

Definitions: Concepts of data types, elementary structures, words and their interpretation; Arrays: Types, memory representation, address translation, functions of single and multi-dimensional arrays with examples; Linked structures: Singly and doubly linked list(non-circular and circular); List manipulation with pointers: Examples involving insertion and deletion of elements, Stacks and queues: Definition, representation, uses and applications Recursion, postfix conversion and evaluation, application of queues, Binary trees Definition, quantitative properties; Path length: internal and external, properties, minimum and-maximum path length of a binary tree, importance; Searching: Linear and binary-search, performance and complexity; Hashing: Concept, advantages and disadvantages, different types of hash function, collision resolution techniques-open addressing with probing, linear

coalesced chaining, applications; **Sorting:** terminology, performance evaluation Different sorting techniques (Bubble, insertion, selection, heap, partition exchange, radix) with

ceractive and / or recursive description, complexity, advantages and disadvantages.

3.3 Systems Software

3.3.1 Operating Systems

What is OS; Concepts of processes; Files; shell; system calls; Structures: Monolithic, layered, virtual, client-server and distributed model: Concept of Synchronization: Semaphores, critical regions, monitor etc., inter-process communication mechanisms; Processor Management; Scheduling: round-robin, priority, queue; I/O Management: Device and device controllers; interrupt handlers and device drivers; Memory Management: Multiprogramming, swapping, paging, virtual memory, page replacement techniques; File system: files and directories, file servers, security and protection, Deadlock: Definition, detection and prevention. Case study: DOS, UNIX, WINDOWS...

3.3.2 Formal Language & Language Translators

Introduction to formal languages and grammars; Finite automata:
Regular expressions, Deterministic and non-deterministic finite automata and their
equivalence, state minimization, General grammars; Turing machine; Language
Translators: Assemblers, Loaders, Linkers, Interpreter; Compiler: Various phases
of compilation, cross compilers.

PART - III

5.1 Microprocessor and Computer Organization - II

(5.1.1) Microprocessor, Interfacing and its applications

Evolution of microprocessors, Basic structure and programming, Clock cycles; timing **diagrams; Interrupts; Bus standards and Interfacing concepts**: Memory interfacing, I/O interfacing and Oils — keyboard interfacing, display interfacing, storage device interfacing, printer, **Programming a microprocessor**: Addressing, Data movement, Arithmetic and logical instruction; Interrupt handling; **Assemblers, interrupt**: Methods of interrupt, priority & management.

5.1.2 Computer Organization — II

ALU: Main sub-units, registers, arithmetic operations, shift and data transfer operation storing, integer and floating point arithmetic circuits, **Memory Hierarchy**: CPU Registers, Cache Memory, Primary memory, Secondary Memory, Virtual Memory, **Control Unit**: Principles, sequence of operations, fetch-decode-execute cycle, micro instruction control organization, **Input-output** (**I/O**): Modes of data transfer, buffers, **I/O** channels, bus other interrupt processing levels and priorities; **Keyboard**; **VDU**; **Dot matrix printer and other devices**.

- 5.2 Data Communication & Computer Network
- 5.2.1 Data Communication

Data Communication; Transmission media; Network; Protocol and standard Analog & Digital signals; Periodic & non-periodic signals; Time & Frequenc domains; Multiplexing: FDM, TDM and applications; Encoding: D/A, VD encoding Error: Different type of errors and their detection.

5.2.2 Computer Networks

Concepts of centralized and distributed computing: Advantages of networking Layered architecture, OSI architecture: Basic features, LAN, MAN and WAN; Simple P based network examples: block diagram, mode of operation and characteristic features.

5.3 Computer Graphics
Introduction: Computer art, animation, image processing, morphing
Projection & Clipping
2-D & 3-D transformation
Liner, Curves and their representation

Paper - VI

6.1 Programming Language — II

Concepts; difference with procedure oriented programming; Data abstraction Objects, classes and methods, inheritance, polymorphism. Software design: problem with top down design; Object Oriented approach; Structured analysis tools; Hybrid design, Principle of separation & responsibility based design.

Basic features: Building objects with classes; Operations with objects; Class libraries; Multitasking and multithreading; Forms; Objects; Events Functions; Procedures: Methods: ODBC Driver; Front end development with database; MFC.

6.1.3 Internet Technologies

What is Internet; Servers; Clients; Port; Domain Name Server (DNS); Accounts ISP; Connection: Dial Up, ISDN, ADSN, Cable modem; Email: Account, sending receiving, on mailing list, IRC; Voice & Video conferencing WWW; Browser.

6.2 Software Engineering
Software life cycle; Different Models; Software Definition; Software Requirement;
Software Specification; Software Quality; Software Maintenance; Software Metric.

Basic concepts: Advantages of DBMS, ANSI/SPARC architecture, physical, conceptual and external models; Entity Relationship diagrams; Data models: Relational, hierarchical and network. File organization: Sequential, indexed sequential, random, inverted; Query Languages: Relational Algebra and Relational Calculus; Fundamental dependencies and normal forms: INF, 2NF, 3NF and BCNF, Structured Query Language: Elementary ideas and simple examples; Security; Integrity; Case Study: Any RDBMS.